
One-Size-Fits-None: Understanding and Enhancing
Slow-Fault Tolerance in Modern Distributed Systems

Ruiming Lu1,2 Yunchi Lu1 Yuxuan Jiang1 Guangtao Xue2 Peng Huang1

1University of Michigan 2Shanghai Jiao Tong University

Abstract
Recent studies have shown that various hardware components
exhibit fail-slow behavior at scale. However, the characteristics
of distributed software’s tolerance of such slow faults remain
ill-understood. This paper presents a comprehensive study that
investigates the characteristics and current practices of slow-
fault tolerance in modern distributed software. We focus on
the fundamentally nuanced nature of slow faults. We develop a
testing pipeline to systematically introduce diverse slow faults,
measure their impact under different workloads, and identify
the patterns. Our study shows that even small changes can
lead to dramatically different reactions. While some systems
have added slow-fault handling mechanisms, they are mostly
controlled by static thresholds, which can hardly accommodate
the highly sensitive and dynamic characteristics. To address
this gap, we design ADR, a lightweight library to use within
system code and make fail-slow handling adaptive. Evaluation
shows ADR significantly reduces the impact of slow faults.

1 Introduction
The reliability of distributed systems hinges on their robust
fault tolerance mechanisms. While deployed distributed sys-
tems today have been designed to tolerate crashes well using
techniques such as state-machine replication, recent stud-
ies [36, 50] show that, fail-slow behavior is prevalent in differ-
ent hardware components (e.g., disk, NIC, switch) of systems
at scale. For example, a NIC can suddenly experience a 50%
packet loss. Such behavior occurs due to firmware bugs, driver
bugs, external temperature, etc., and leads to severe incidents.

These studies have motivated a few recent research solu-
tions [49, 54, 57, 64]. For example, Copilot is a consensus
protocol designed to tolerate one slow replica by introducing
proactive redundancy and parallel processing [54]. Devel-
opers also become increasingly aware of this overlooked
failure mode. For instance, HBase developers introduced an
enhancement feature [9] to detect and mitigate slow syncs.

Despite the progress, the characteristics of slow-fault toler-
ance in distributed systems remains ill-understood. The most
notable existing insight comes from a 2013 study [32], which
shows that slow hardware can cause severe cascading failures
and “limplock” of the entire cluster. This study, while illumi-
nating, focuses on demonstrating the existence of limplock in
worst-case scenarios. For example, it demonstrates that when
the disk throughput on the HDFS master node is permanently

slowed down by 1000×, HDFS experiences a cluster limplock.
Moreover, the landscape of both hardware and software has
evolved significantly since 2013. Hardware is now more pow-
erful, holds larger capacities, and integrates new technologies.
Software adopts asynchronous programming, event-driven
designs, chaos engineering, observability tools, etc. These
changes have potentially altered the status quo.

To address this gap, this paper presents a study that compre-
hensively examines how modern distributed software reacts
to slow faults. Our goal is to provide insights for developers to
enhance their systems’ slow-fault tolerance. The key challenge
developers face is that, unlike crash faults, slow faults are
not binary but rather have great varieties. Even defining slow
tolerance is not easy. Indeed, when a hardware component has
a slow fault, the software execution inevitably gets impacted.
For distributed software, it can leverage its redundancy and
concurrency to minimize the overall performance degradation.

Our study thus focuses on examining the nuances of fail-
slow tolerance. We develop a testing pipeline that uses fault
injection to systematically explore various slow faults and
measure how a system reacts to the varieties. We also examine
the current practices of slowness detection and mitigation.

Our study reveals many interesting findings. For example,
we find that the sensitivity to different configurations of slow
faults varies significantly across the studied systems. In some
systems, a 1 ms network slow fault can cause 25% performance
degradation,while other systems need a 100 ms delay to show a
similar level of performance degradation. In almost all studied
systems, we observe the existence of a danger zone, where a
slight increase in slow-fault severity results in a significant
increase in degradation. However, the range of these danger
zones is often narrow,which poses challenges for early alerting.
Moreover, a milder slow fault can cause more harm than a
severe one. We also find that while the latest solutions or
recent versions of a mature system has added slow handling
mechanisms, these mechanisms are not effectively triggered.

A unifying theme in our study’s findings is that slow faults
not only are non-binary but also have highly dynamic and
sensitive impact (depending on workload, severity, duration,
etc.). However, developers’ existing efforts only try to address
the non-binary nature but miss the dynamic and sensitive
characteristics. The existing slowness handling mechanisms
are controlled by static, over-conservative thresholds, which
are only triggered by the most severe slow faults. Even when

System Language Version Benchmarks

Cassandra Java 4.0.10 YCSB [30]
HBase Java 2.5.6 YCSB
HDFS Java 3.3.6 MRBench, TeraSort
etcd Go 3.5.10 YCSB, v3 benchmark [6]
CRDB Go 23.1.11 YCSB, sysbench [19]
Kafka Java, Scala 3.5.0 OpenMessaging [12]

Table 1: Studied systems. CRDB: CockroachDB.

the thresholds are exposed as parameters, it is hard for users to
tune these parameters and they cannot be changed dynamically
once set. Fail-slow handling needs to be made more dynamic.

Motivated by this takeaway, we design ADR, a lightweight
adaptive fail-slow handling library that developers can easily
use as a plug-in in their code. ADR will replace the static
logic with an adaptive one and determine the levels of mitiga-
tion actions. ADR is robust against varying slow faults and
workloads by monitoring both the value and update frequency
of traced variables. We implement ADR with two distributed
systems. We demonstrate that using this library, the system
performance degradations under different slow faults and dif-
ferent workloads are significantly reduced by 65% on average
with low overhead, compared to using static thresholds.

Besides code enhancement, developers start to introduce test
cases when they add slowness handling mechanisms. However,
they only perform unit tests that use a worst-case setting to
validate the basic code correctness. The effectiveness of these
mechanisms in practice remains unchecked. Thorough fault
injection testing is needed to measure the realistic effectiveness.
The testing pipeline we develop addresses this gap and provides
a continuous measurement tool for developers to understand
and improve their systems’ slow-fault tolerance level.

Our testing pipeline and ADR are available at https:
//github.com/OrderLab/xinda.

2 Methodology
We examine six large-scale distributed systems (Table 1). We
choose them because they are representative and widely de-
ployed in many companies. They are developed in different
programming languages and support critical services, includ-
ing distributed storage, databases and streaming. We select
their latest stable versions at the time of our study.

We also study three state-of-the-art solutions tackling slow
faults. We examine their effectiveness in Section 5.
Benchmarks. Measuring slow-fault tolerance requires rep-
resentative workloads. Prior work uses manually crafted mi-
crobenchmarks (e.g., creating thousands of empty files to
exercise the logging protocol) [32]. Such benchmarks provide
localized views of individual features in the system. However,
deployed systems receive many more complex and mixed
requests. Thus, we use comprehensive benchmarks to better
reflect the system responses under real deployments.

Table 1 lists the benchmarks we use to measure each system.
For database systems,we use YCSB [30] to generate workloads
with distinct access patterns, including read-only, write-only,

and mixed reads and writes. For etcd, we also use the official
benchmarking tool [6] to test other operations (e.g., range
queries and transactions) andetcd-specific requests (e.g., leases
and watches). For CRDB, we also use sysbench [19], a popular
benchmark for relational database systems, to test delete, insert
and range query operations. For HDFS, we use MRBench
and TeraSort: MRBench executes a set of MapReduce jobs
while TeraSort evaluates the system’s capacity to sort large
volumes of data. For Kafka, we use OpenMessaging [12] to
generate message streams under different configurations (e.g.,
partitions, batch size, and linger time).
Load stress. We adjust the benchmark load intensity to en-
sure all nodes are highly utilized: if one node crashes, the
throughput of the remaining nodes does not increase signifi-
cantly. We achieve this by tuning the concurrency levels of
the benchmarks (e.g., thread count in YCSB).
Fault Injection. Prior studies [32, 36, 49] show that slow
faults can originate from hardware, software (e.g., drivers),
or environment issues. Regardless of their root causes, slow
faults will ultimately affect a distributed system through the
underlying interfaces. Thus, instead of injecting hardware-
level faults, we inject slowness directly to the filesystem and
network layer to minimize influences of uncontrollable factors.
We use blockade [2] to inject network faults and charybdefs [3]
to inject filesystem ones (Appendix A).

Since slow faults have wide varieties, we examine them by
the following fault attributes:
• Severity. We study three major types of slow faults: network
packet loss, network delay, and filesystem delay.

For packet loss, we choose 1%, 10%, 40%, and 70%. This
is evidenced by prior empirical studies in data center net-
works and Internet service providers (ISPs) [36,52,61]: faulty
links/devices could lead to 2% to 100% packet loss in Mi-
crosoft Azure [61]; 1-50% packet loss is observed from 12
institutions including NetApp and Twitter [36]; 0.1% to 100%
packet loss is used to test a gray failure detector in ISPs [52].

For network delays, we choose 100 us, 1 ms, 10 ms, 100 ms,
and 1 s. This is backed by a study from Microsoft data cen-
ters [37], where the tail network latency varies from several
milliseconds to hundreds or even thousands of milliseconds.

For filesystem delays, we choose 1 ms, 10 ms, 100 ms, and
1 s. This is based on an empirical study on fail-slow disks in
Alibaba data centers [50], where faulty device latency ranges
from hundreds of microseconds to nearly a second.
• Location. We inject faults to only one node per experiment.
For leader-based systems, faults are injected to either the
follower or the leader: master or regionserver for HBase,
namenode or datanode for Hadoop, leader or follower node
for etcd. Although there is a concept of leader in CRDB (one
leaseholder per range) and Kafka (one leader per partition),
such leader roles are dynamic and are changing at runtime; for
Cassandra, node roles do not differ after cluster initialization
(gossiping). Thus, we inject faults to only one (arbitrary) node
of the CRDB, Kafka, and Cassandra clusters.

https://github.com/OrderLab/xinda
https://github.com/OrderLab/xinda

Time (s)0 "! "" "#$%

Slow network

② Warm-up ③ Slow-fault injection ④ Recovery

Benchmark starts

① Init
flexible duration

Or

Or

flexible
start time

Th
ro

ug
hp

ut

Flaky network

Slow filesystem

Sample throughput time series

Figure 1: Our slow-fault tolerance testing pipeline.

Multiple slow faults could occur simultaneously. However,
prior work suggests that fail-slow is a rare yet independent
event [49, 57]. For example, Alibaba monitors 248 K SSDs
for 10 months [49], only to find 304 fail-slow drives and they
all come from different nodes; Nutanix monitors distributed
services on 39 K nodes over 7 months [57], only to collect 232
independent fail-slow tickets. Therefore, in our experiments,
we inject faults to one node at a time to capture the most
common and realistic fault scenarios while maintaining focus
on a representative fault model.
• Duration. We explore faults of varying durations, from
transient issues lasting 30 seconds to long-lasting ones that
cover the whole experiment.

2.1 Testing Pipeline
We develop a general and automated slow-fault tolerance test-
ing pipeline that streamlines the aforementioned components:
deploying a system, ensuring comparable experiment setup,
running cloud benchmarks, injecting diverse slow faults, and
collecting and summarizing key metrics. Figure 1 shows the
diagram of our testing pipeline. It has four main stages:
➀ Initialization. Upon each test, we first bring up a cluster of
the tested system. We wait until the cluster is fully initialized
and ready to serve any requests. Test data in a benchmark is
also loaded in this stage. We use a small cluster of 3–6 nodes
for the testing. We also validate our major findings using a
larger cluster size of 10 nodes and 20 nodes in Appendix B.
➁ Warm-up. We let the benchmark run for a warm-up period
(30 s) before we start injecting any faults. This is to ensure that
the system has reached a steady state so that the statistics we
collect are representative. The benchmark client is connected
to the system via a dedicated node to avoid interference with
the system under test. We also make sure the client connects
to all nodes of the system so that the benchmark will not stop
in case of a node failure. Moreover, the performance records
during the warm-up period will be excluded from our analysis.
➂ Slow-fault injection. After the warm-up period, the pipeline
is ready to inject faults. It enumerates distinct fault attributes
and their combinations, injects one setting of slow fault per
experiment, and records the setting for later analyses.
➃ Recovery. The pipeline clears the injected faults, after
which the system performance will gradually recover.

2.2 Data Collection
Our pipeline collects performance logs from ongoing bench-
marks and system logs throughout the testing process. After

each test concludes, the pipeline processes these logs to extract
critical system responses, such as tail latency and throughput
time series. We then utilize these responses to calculate per-
formance degradation, which serves as the primary metric for
quantifying the system’s nuanced tolerance to slow faults.

Specifically, we first calculate the average throughput be-
fore fault injection (denoted as avg_normal) and during slow
faults (denoted as avg_slow). We then derive the performance
degradation as (avg_normal − avg_slow)

avg_normal ×100%, where a higher
percentage indicates more severe degradation. Analyzing how
degradation and latency vary across different fault scenarios
provides insights into the system’s tolerance to slow faults.

3 Nuanced Slow-Fault Tolerance
A key challenge distributed systems developers face in ad-
dressing slow faults is that they often cannot anticipate the
specific slow faults their systems might encounter in the wild,
particularly when the systems are deployed on hardware or
workloads that differ from their testing environment. In this
section, we delve into this nuanced nature by injecting diverse
fault scenarios (§3.1), enforcing different hardware resource
limits (§3.2), and simulating distinct workload patterns (§3.3).

3.1 How Systems React to Varying Slow Faults?
Figure 2 presents the performance degradation of the studied
systems under different slow faults with varying types, sever-
ities, and locations. We also validated the observations and
findings below using a larger cluster size (Appendix B.1).
Finding 1. The same slow fault incurs radically different
consequences across systems. For example, some systems
degrade by more than 25% with a 1 ms network delay, while
others remain robust until faced with delays 100× greater.

All the evaluated systems use network and filesystem ex-
tensively. They all have extensive fault-tolerance mechanisms.
Despite these similarities, their slow-fault tolerance still ex-
hibits high variability. For example, CRDB and etcd require a
delay as high as 100 ms to yield a notable degradation (>25%),
while Cassandra, HBase and Kafka only need 1ms. Moreover,
systems like Cassandra, HBase, and Kafka can even experi-
ence an unbearable degradation of 70% with only a 10 ms
network delay, while the other systems (except for the etcd
leader case) never degrade to this extent even with a 1 s delay.

The discrepancy arises from the differences in their fault
tolerance mechanisms, at both the design and implementation
levels. We further discuss their practices in Section 4.
Implication. Infrastructures (e.g., network) and systems (e.g.,
a database) are often monitored independently and use one-
size-fits-all alerts. This can easily miss seemingly minor slow
fault that turns out to be damaging for certain systems. System-
specific and cross-layer slowness monitoring is needed.
Finding 2. The relation between performance degradation
and fault severity is non-monotonic. In half of the studied
systems, higher packet loss leads to lower degradation.

fs
delay 1ms

fs
delay 10ms

fs
delay 100ms

fs
delay 1s

nw
flaky 1%

nw
flaky 10%

nw
flaky 40%

nw
flaky 70%

nw
delay 100us

nw
delay 1ms

nw
delay 10ms

nw
delay 100ms

nw
delay 1s

0

25

50

75

100

CRDB etcd
follower

etcd
leader

HDFS
data

HDFS
name

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

0

25

50

75

100

Cass. CRDB etcd
follower

etcd
leader

HBase
region

HDFS
data

HDFS
name

Kafka

0

25

50

75

100

Cass. CRDB etcd
follower

etcd
leader

HBase
region

HDFS
data

HDFS
name

Kafka

Figure 2: Performance degradation under filesystem delay (left), network packet loss (middle), and network delay (right). The darker the colors,
the more severe the faults are. Each experiment was repeated 50 times for generalizability. Error bars refer to 95% confidence intervals.

In CRDB, as Figure 2 shows, the degradation only increases
as the filesystem delay increases from 1 ms to 100 ms; however,
with a 1 s delay, the resulting degradation (44%) is surprisingly
smaller even than the case of 10 ms delay (48%). In Kafka,
degradation under a 1 s delay (68%) is also smaller than that
under a 10 ms delay (74%). In etcd, the performance becomes
better when we inject a higher packet loss (i.e., a negative
trend) to the leader. The underlying cause lies in whether leader
re-election is triggered: a slow leader degrades performance
until heartbeat loss triggers re-election (see Section 4.2.1).
Finding 3. Even within the same system, the performance
impact of different slow-fault types varies by up to 10×.

In CRDB, the average degradation with different filesystem
delays is 47%, which is 3.6× that of a delayed network (13%).
In etcd, the average degradation under a delayed network is
45%, which is 1.7× than that under packet loss.
Implication. System architects need to consider the distinct
impact of different slow-fault types when deciding which in-
frastructure component to prioritize and optimize. Developers
should introduce tailored handling for sensitive fault types.
Finding 4. Slow faults in followers can impose a more severe
(1.5×) performance penalty than similar faults in leaders.

It is commonly assumed that faults in leader nodes are more
impactful than those in followers. However, our study shows
a surprising twist in etcd: a slow follower incurs severe (up to
68%) and higher degradation than slow leaders. For example,
under flaky networks, the degradation by slow followers (45%)
is 1.5× that of slow leaders (31%). This is counter-intuitive as
only one slow (even crashed) follower in a 3-node quorum-
based system like etcd should at most degrade the overall
performance by a third. We investigate and find that the root
cause lies in the mismatched awareness of slow faults from the
gRPC client and etcd endpoints (elaborated in Section 4.2.2).
In contrast, a slow master in HBase does not bottleneck the
system, as the YCSB benchmark only interacts with the region
servers. In HDFS, both namenodes and datanodes exhibit a
similar impact. Since leader roles in Kafka and CRDB are
dynamic and change at runtime, the performance impact of a
slow leader or follower can be hardly traced or compared.

3.2 Do Resource Limits Amplify Slow Faults?
When a distributed system gets deployed, it can run on different
hardware. Does the system’s slow-fault tolerance change

-1%

-1%

0%

3%

3%

3%

18%

15%

14%

35%

33%

33%

67%

65%

66%

88%

88%

88%

7%

9%

8%

26%

25%

30%

72%

72%

75%

78%

79%

79%

92%

91%

91%

97%

97%

97%

flaky-p1 flaky-p10 slow-10ms slow-100ms

1 2 5 1 2 5 1 2 5 1 2 5

8G

16G

32G

CPU cores

M
e

m
o

ry

0%

20%

40%

60%

80%

100%

0.751.001.25

x

y

Figure 3: Degradation of etcd under different CPU and memory
limits. Each cell corresponds to the average degradation of the same
experiment repeated 50 times. Faults are injected to the leader.

under varying hardware resource limits? Figure 3 presents
the performance degradation of an etcd cluster under four
fault scenarios. Each node is subject to the same limits on
CPU (1-5 cores) and memory (8-32 GB) based on hardware
recommendations provided by the developers [8].

Finding 5. Scaling up resource improves normal perfor-
mance but paradoxically exacerbates the impact of slow faults.

For example, for etcd, under a network delay of 10 ms
and a per-node memory limit of 32G, degradation increases
from 7%, 26%, to 72% with a per-node CPU core limit of
1, 2, 5, respectively. This is because the baseline request
latency becomes lower with more CPU cores (from 74 ms to
10 ms), thus the same delay worsens the degradation. This is
also the case for packet loss, where latency increase is more
pronounced with more CPU cores. However, degradation does
not vary much as memory changes. This is because etcd tends
to be CPU bound under heavy load [8]. We validate these
observations with a larger cluster size (Appendix B.2).
Implication. More hardware resources do not equate to better
fault resilience. Developers need to test their systems’ slow
tolerance mechanisms under different hardware constraints.
The slow-fault alerting and actions need to be resource-aware
and recalibrate upon resource changes.

3.3 How Workloads Affect Slow Tolerance?
Deployed distributed systems need to handle diverse and of-
ten unpredictable workloads, which can cause developers to
overlook slow-fault tolerance in a specific workload. Figure 4
shows the performance impact of network delays for Cas-
sandra and etcd under different workload patterns (read only,
balanced mix, and write only). We also validate the following
observations with a larger cluster size (Appendix B.3).

Read only Mixed Write only

0

25

50

75

100

10

0 1 2 3 4 5 6 7 8 9 10

Network delay (ms)

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

(a) Cassandra

0

25

50

75

100

10

0 1 2 3 4 5 6 7 8 9 10

Network delay (ms)

(b) etcd

Figure 4: Performance degradation of (a) Cassandra and (b) etcd
under distinct workload patterns and network delays. Each set of
experiments was repeated 50 times for generalizability. The shaded
area highlights the “danger zone” where performance degradation
escalates dramatically. Mixed: 50% reads and 50% writes.

Finding 6. The performance impact of slow faults is highly
dependent on the workload, particularly in Raft-based systems
(etcd, CRDB, and Kafka), which show up to 7.2× differences.

Under a 10 ms network delay, the performance degrada-
tion of etcd under read-only, balanced mix, and write-only
workloads is 85%, 18%, and 15% (up to 5.7× differences).
For CRDB, the degradation can vary up to 7.2× differences.
For Kafka, the degradation under the asynchronous [1] and
synchronous [18] scheme is 20% and 3% (6.7× differences),
respectively. For Cassandra and HBase, the degradation under
the three workload patterns has lower variances (an average
of 1.3× and 1.1× differences, respectively). Also, different
systems are sensitive to different workload patterns. In Cas-
sandra, write-only workloads yield the highest degradation,
while read-only ones yield the highest degradation in etcd.
Finding 7. Danger zones commonly exist in the studied
systems, where a small increase in slow-fault severity leads to
a significant increase in performance degradation.

Danger zone. The sensitivity to workload patterns and fault
severities prompts us to investigate the presence of a “danger
zone”, where degradation escalates dramatically from a mod-
erate 10% to an unbearable 50% as the severity of the fault
increases. Identifying the danger zone could potentially help
system administrators to proactively monitor and mitigate slow
faults, before they escalate and incur catastrophic degradation.

Figure 4 highlights the danger zone. Etcd displays a danger
zone from 1 ms to 2 ms network delays only under read-only
workloads. In Cassandra, however, danger zones exist under all
workloads: 0.2 ms ∼ 3 ms, 0.1 ms ∼ 2 ms, and 0.1 ms ∼ 1 ms
for read-only, mixed, and write-only workloads, respectively.

We also apply the danger zone analysis to the other systems.
Table 2 summarizes the results. The notion of a danger zone
exists in almost all studied systems. However, in systems
like etcd and CRDB with write-dominant workloads (≥ 50%
write), the danger zones are not obvious. This is because slow
writes can be alleviated by their Raft-based protocols. Thus,
degradation does not increase drastically as the fault severity
increases. Kafka, under batch workloads, does not exhibit
obvious danger zones, as batched requests can alleviate the
impact of slow faults. HDFS also shows no clear danger zone

Network delay (ms) Packet loss (%)
R M W R M W

CS 0.2∼3 0.1∼2 0.1∼1 0.2∼2 0.2∼1 0.2∼0.7
HB 0.2∼2 0.2∼2 0.2∼2 0.1∼1 0.2∼1 0.2∼1
CR 4∼5 N/A N/A 2∼5 N/A N/A
EF 1∼3 N/A N/A 0.2∼2 N/A N/A
EL 0.5∼2 N/A N/A 0.2∼2 N/A N/A

Async Sync Batch Async Sync Batch
KF 0.7∼2 0.6∼6 N/A 1∼5 1∼5 N/A

MRBench TeraSort MRBench TeraSort
HD N/A N/A N/A N/A

Table 2: Danger zone of Cassandra (CS), HBase (HB), CRDB (CR),
etcd leader (EL) and follower (EF), Kafka (KF), and HDFS (HD)
under different workloads. We denote N/A for cases where the danger
zone does not exist. R: read-only; M: mixed; W: write-only.

as it is optimized to support batch processing workloads.
Implication. Early alerting, based on the danger zones associ-
ated with sensitive workload patterns, is useful for effectively
and proactively managing slow faults. However, the range of
these danger zones is quite narrow, typically spanning only a
few milliseconds of delay or less than a few percentage points
of packet loss. Therefore, the utility of danger zones for early
alerting may be limited without fine-grained monitoring.

3.4 Does Tuning Configurations Help?
To ensure consistency and avoid overfitting, we use default
configurations of the studied systems. Does tuning a system
help its slow-fault tolerance? We use HBase as an example,
tuning its configurations for tolerating a 100 ms network delay.

To locate configurations related to slow-fault handling, we
search the HBase codebase for keywords such as “slow” and
“timeout”. In total, there are 120 places matched. Most of
them are TimeoutException and not configurable. We then
manually inspect the rest of them and find 10 configurations
(invoked in 43 different files) that are most related to slow
faults (e.g.,RPC timeout, retry limit). Then,we assign different
values for them, making sure that they will always be triggered
under a 100 ms network delay. For example, we configure the
RPC timeout to be either 10 ms, 50 ms, or 100 ms. Together,
we explore 7,776 different combinations of configurations.

We then iterate through each combination and test HBase by
injecting a 100 ms network delay with fixed workload settings.
This already adds up to 540 machine hours. As a result, the
optimal one yields an average degradation of 27%, which
is indeed much lower than that of the default configuration
(98%). Finally, we test HBase with this optimal configuration
under the same slow fault but different workload settings.
Finding 8. Fine-tuning system configurations enhances
tolerance to specific slow faults, but only within controlled
environments. Even worse, it may harm system availability
when faced with diverse, real-world workloads, leading to
severe degradation or even system failures.

Figure 5a shows the average degradation under different

0

25

50

75

100

D
e

g
ra

d
.
(%

)

(a) Degradation

Tuned
Others

0

25

50

1 8 32 1 8 32 1 8 32 1 8 32 1 8 32 1 8 32

10K 1M 10K 1M 10K 1M

readonly mixed writeonly

Thread count / record count / workload

It
e

r.

(b) Availability

Failed
Compl.

Figure 5: Degradation and availability of HBase with fine-tuned,
optimal configurations to tolerate a 100 ms network delay. The x-axis
corresponds to combinations of workload settings. The blue bar
corresponds to the workload that HBase is fine-tuned on. The red
bars indicate the number of failed runs out of 50 iterations. Error
bars refer to 95% confidence intervals. Compl.: completed runs.

workloads. We iterate through different numbers of client
threads, number of records (10K and 1M), and workload
patterns. The blue bar corresponds to the workload setting
that we previously fine-tuned on. The previously optimal
configuration does not always perform well. For example, it
causes severe degradation (>90%) under read-only workloads.
Also, the degradation jumps to 48% with 32 clients, while a
previously suboptimal configuration yields 34% degradation.

When analyzing the results, we find that the HBase cluster
would sometimes fail and disconnect from the clients. Thus,
we further check the availability of HBase, measured by the
number of completed runs. As Figure 5b shows, among 18
workload settings, HBase fails at least once in 11 of them
(the red bars), which are all heavier than what we previously
fine-tuned on. The worst case is a read-only workload with
one million records and 32 client threads: 35 out of 50 runs
fail. After investigation, we find that the previously optimal
configuration overfits the specific fault and workload, making
HBase over-sensitive to and thus fail under heavier workloads.
Implication. Fine-tuning systems for slow faults is not only
time-consuming but also does not generalize well across dif-
ferent workloads. Relying on static, fine-tuned configurations
makes a system’s slow-fault tolerance fragile.

3.5 Can Tail Latency Capture Slow Faults?
Tail latency is a widely used metric forperformance monitoring
and identifying potential slowdowns. Is tail latency always
reliable to capture slow faults? Figure 6a presents the tail
latency of etcd, under a 10 ms network delay in the leader.
Each experiment lasts for 150 s with faults extending from
30 s (20% service length) to 150 s (100% service length).
Finding 9. Tail latency is not always reliable in capturing
slow faults. The latency measurements are prone to under-
representing the severity of slow faults due to the dilution by
abundant measurements from the normal (fast) period.

The measured tail latency does not exhibit significant varia-
tions as fault duration increases. For example, as the duration

p90 p95 p99 p999 p9999 Degrad.

0

50

100

150

L
a
te

n
c
y
 (

m
s
)

(a) High tails

-5

0

5

10

15

0 30 60 90 120 150

Fault duration (s)

In
c
re

a
s
e
 (

%
)

0

20

40

60

80

100

0 30 60 90 120150

Fault duration (s)

D
e

g
ra

d
a

ti
o

n
 (

%
)

(b) Degradation

Figure 6: Tail latency and performance degradation of etcd. A 10 ms
network delay is injected to the etcd leader with fault durations
ranging from 30s to 150s. Each experiment lasts for 150 s.

increases from 30 s to 150 s, the increase in 99.9𝑡ℎ latency
only ranges from 0.4 ms to 7.2 ms compared to the baseline,
which translates to a 0.3%∼5.5% relative increase. This is
counter-intuitive as we are injecting a 10 ms delay but in return
only observe an increase in the 99.9𝑡ℎ as minimal as 0.4 ms.

This phenomenon illustrates a limitation of relying on tail
latency to detect slow faults. When a system suffers from a
slow fault, much fewer requests are processed, hence fewer
latency measurements are collected during the slow period.
They can be outnumbered by those gathered in the normal
period, leading to a misleading perception of low impact for
the fault. We observe this pitfall when attempting to repeat the
evaluation of MultiPaxos [44, 51] in Copilot [54] (Section 5).
Even when the injected fault lasts 90 s in a 100 s experiment
time, the 99𝑡ℎ latency is still not indicative, because the 90 s
slow period only produces 900 latency measurements, while
the 10 s normal period produces 300K measurements. Other
systems exhibit similar phenomena. For example, the 99𝑡ℎ
latency is only indicative when the degradation is severe
(≥ 83% in Cassandra, ≥ 68% in Kafka, ≥ 98% in HBase) and
persistent (≥ 90 s in Cassandra, ≥ 120 s in Kafka and HBase).

This highlights the need of using additional metrics to more
comprehensively capture slow faults. For example, throughput
degradation, regardless of fault durations, is more indicative
of the impact of slow faults on the system (Figure 6b).

3.6 Other Findings
Besides performance degradation, we also study other aspects
of slow-fault tolerance. First, we study the time to recover from
slow faults (Appendix E). We find that systems recover fast
(typically within 2 s) from filesystem and network delays but
slower (sometimes more than 20 s) for flaky network. More-
over, we study the residual impact of slow faults (Appendix F).
We find that severe slow faults incur notable residual per-
formance impacts for several systems. Lastly, we examine
how slow-fault tolerance evolves across different versions of
the same system (Appendix G). We find the improvement in
slow-fault tolerance is limited over time.

Static threshold
System metric WT WC FT

Cassandra Execution time of last query [16] 500 ms - -
CRDB Execution time of last disk write [14] 5 s - 20 s
CRDB Time to flush pending logs [15] 10 s - 20 s
etcd /livez to check raft loop execution [7, 13] 5 s 3 -
HBase Time to flush WAL to disk [9] 100 ms 100 10 s
HDFS Time to read responses (ACK) from datanodes [17] 30 s - -
Kafka Execution time of last request [10, 11] 30 s - 2 min

Table 3: Examples of static thresholds used in all studied systems for slow
detection. WT: warning threshold; WC: warning count; FT: fatal threshold.

System metric slow?

Trigger a warning action

warning
threshold

Trigger a fatal action
fatal threshold(sync, query, logging)

>

>

Static threshold

Figure 7: Summary of the common slow detection logic in
all studied systems.

4 Current Practices to Handle Slowness
In this section, we study the current development and testing
practices of handling slowness in the studied systems.

4.1 Slowness Detection Method
Finding 10. All studied systems use static timeouts.

Table 3 summarizes developers’ efforts of slowness detec-
tion in the codebases of the studied systems. For example,
HBase uses a few static thresholds such as DEFAULT_SLOW_
SYNC_TIME_MS=100ms [5] to identify slow syncs. It also
counts the number of slow syncs in a one-minute window: if
the total number exceeds a default value of 100 [4], additional
actions (log rolls) will be triggered [9]. We will further study
the effectiveness of this approach in Section 4.2.3.

Another example lies in the storage engine of CRDB (i.e.,
pebble), where disk health checks enforce a fixed diskSlow
Threshold (set as 5 s) to detect disk slowness, and adopts
maxSyncDuration (set as 20 s) to trigger a service crash [14].
Similar logic is also applied to detect slow logging [15].

Moreover, Cassandra uses slow_query_log_timeout_
in_ms=500ms for slow queries [16]. HDFS uses dfsclient
SlowLogThresholdMs=30s to trigger a slow read proces-
sor warning [17]. Kafka uses request.timeout.ms and
delivery.timeout.ms, set as 30 s and 2 min respectively,
to retry operations [10, 11]. etcd detects stalled writes by
checking raft loop execution and exposes a /livez endpoint
that supervisors can use to restart etcd if needed [7, 13].
Summary. Figure 7 summarizes the common logic of two-
staged slow detection in the studied systems. For a monitored
system metric, developers first set a warning threshold (WT)
to detect slowness. If WT is exceeded, all studied systems
will print warning messages. Moreover, if WT is exceeded
multiple times (warning count, WC), or the metric exceeds a
more severe threshold (fatal threshold, FT), escalated actions
like log rolls or service kill will be triggered.

4.2 Slowness Mitigation Action
Besides detection and alert, current systems also trigger dif-
ferent mechanisms in reaction to slow faults. We study the
following four major mechanisms: leader re-election, client-
side reconnection, log roll, and escalation to fail-stop.
4.2.1 Leader Re-election
Systems like CRDB, etcd, and Kafka employ Raft, the leader-
based consensus protocol [55]. If a leader encounters failures,

either fail-stop or fail-slow, it will be unable to send out
heartbeats in time. Subsequently, a healthy follower node will
become the new leader and take over the workload.

Finding 11. Leader re-election is only effective when slow
faults are severe enough to impair heartbeats or lease liveness.

In Section 3.1, we observe that, a slow etcd leader yields
less degradation under intensive slow faults (70% packet loss)
compared with milder ones (10% packet loss). This is also
the case for CRDB. After further investigation, we discover
that both systems recover from intensive faults a few seconds
after injection. In etcd, the heartbeat timeout is 100 ms. Under
milder slow faults, the degraded leader is still responsive to
heartbeats. Thus, re-election will not be triggered, leading to
continuous slowdowns. Conversely, under more severe slow
faults, the leader may fail to respond. Therefore, a new leader
will be elected and the system will be no longer bottlenecked
by slow faults. The logic is similar in CRDB due to the lease
interval (6 s). Appendix C provides more detailed illustrations.

4.2.2 Client-Side Reconnection in gRPC
In replicated systems, it is common for clients (or a load
balancer) to maintain a pool of servers. When a server becomes
unreachable, the client can reconnect to another server.

Finding 12. The client side and server side can have different
awareness of a slow fault, causing a single slow follower to
degrade the cluster performance.

We observed in Section 3.1 that, a slow etcd follower can
also degrade system performance, even if its peer nodes are
both healthy and underloaded in the meantime.
Root cause. Clients use a gRPC balancer to connect to and
distribute requests across the etcd cluster. Initially, the balancer
maintains a simple keepalive ping with one of the endpoints.
This connection persists unless the keepalive fails. If the
endpoint is a mildly slow follower, the keepalive may not break
and thus the slow follower still degrades system performance.
Conversely, if severe slow faults break the connection, the
balancer will switch to another endpoint, and the performance
is restored. Appendix D provides a more detailed illustration.

Essentially, there is a mismatch of information between the
server and the client. Although the server side can detect the
slow follower, the gRPC balancer lacks this insight. This calls
for enhanced protocols to exchange slowness information.

4.2.3 Slowness-triggered Log Roll in HBase
HBase employs Write-Ahead-Log (WAL) to record all data
modifications. After a write operation is logged, HBase tries
to flush WAL to disk (i.e., called sync). When WAL reaches
certain size or age, HBase closes the current WAL and starts
a new one (i.e., called log roll) on a random datanode. Log
roll was designed as an efficient mechanism to constrain the
WAL file size and ensure fast log replay during recovery.

Interestingly, HBase developers later leverage log roll to
also address slow faults. Recall that HBase will randomly
select new datanodes after a log roll, thus the log rolling
can help mitigate slow faults by avoiding the slow datanode.
Starting from Version 2.3 (July 2020), developers add log roll
into the slow-fault handling pipeline [9]. It detects slow syncs,
and triggers a log roll when syncs exceed 10 s or there are
more than 100 slow syncs in one minute.
Finding 13. The conservative thresholds prevent log roll
from being triggered even under severe slow faults.

Despite the new slow-fault handling mechanism, HBase
still suffers from severe performance degradation under slow
faults as evidenced in Section 3.1. The empirical thresholds
developers choose limit this mechanism’s effectiveness.

The current threshold of slow sync, 100 ms, is excessively
conservative. As evidenced by our evaluation, a mere 100 ms
network delay on the HBase region server already leads to
a drastic performance degradation (see Figure 2). By the
time a slow sync is detected, the system has already been
significantly impacted. Similarly, the condition to initiate a
log roll—incurring 100 slow syncs within 60 seconds—is
too strict. Under such a condition, HBase is likely to have
already collapsed. To verify this, we inject a network delay
of 1 s that lasts for 60 s (yielding a degradation of more than
98%). As a result, only 32 slow syncs are reported during the
60 s injection window, failing to trigger a log roll.

4.2.4 Escalation to Fail-Stop
As previously shown, allowing slow nodes to continue serving
can worsen the system performance. Recent systems adopt the
fail early principle, choosing to kill the corresponding process
or node in the face of unexpectedly severe slowness [15].
Finding 14. Recent practices adopt fail early principle to
handle the severely slow processes and nodes.

For example, in CRDB, if a sync operation exceeds maxSync
Duration=20s, the process will be killed. In etcd, if we inject
persistent yet slight network delays, the system keeps logging
warnings and error messages, and kills the slow endpoint
in minutes. For HBase, if the slowness-triggered log rolls
coincide with a flaky network, there are also chances these
log rolls fail and escalate to crash failures of nodes.

While such actions can be beneficial, they need to be applied
carefully, because they can impair the system reliability, e.g.,
leading to cascading failures [38]. Distinguishing a truly
severe slow fault from noisy ones is also challenging.

4.3 Testing
In all the studied systems, the tests for their slow-fault han-
dling take the form of unit tests instead of integration tests. In
unit tests, developers use the sleep function to exceed static
detection thresholds, and assert-check the triggered actions.
For example, in etcd, developers simulate stalled disk writes
by calling sleep("30s") [20]; in Cassandra, developers fab-
ricate a slow operation, by calling Thread.sleep() [22],
then assert-check whether the operation is detected as slow,
completed, or aborted [21]. Yet upon reviewing the code and
documentation, we find that none of the systems employ an
injection tool to test slow faults in an end-to-end manner.
This raises concerns about whether preset static thresholds are
appropriate and whether the mechanisms can be reliably trig-
gered in a real deployment, particularly as different deploying
environments and workloads incur varying system responses.
Finding 15. Current testing of slow-fault handling mecha-
nisms focuses on the functionality instead of the effectiveness
and robustness of their triggering conditions in practice.

5 State-of-the-Art Solutions
Researchers have recently proposed advanced fail-slow solu-
tions, which have not yet been incorporated into the studied
systems. Are these latest techniques effective? In this section,
we evaluate three state-of-the-art solutions.
Perseus. Perseus [49] uses machine learning techniques to de-
tect fail-slow storage devices. It relies on device-level telemetry
data to train a regression model that infers the normal latency
of a device, and detects a slow one if its latency is much higher.
The training and detection are both offline.

We re-implement Perseus strictly following its original
design. Since Perseus’s core idea is to model device-level
throughput with latency, we adapt it to model the end-to-end
latency and throughput of the studied systems. Figure 8a shows
the latency-vs.-throughput (LvT) distribution of HBase under
a 50/50 read-write workload. The blue points refer to the LvT
distribution of HBase without slow faults. First, we apply the
same outlier detection algorithms [23,59] to filter out biased
samples. Then, we train a similar polynomial regression model
and calculate the 99.9% prediction upper bound (the blue line):
any LvT points above the line are considered slow. Finally,
we inject different levels of network delays (the green points)
and check if the upper bound identifies any slow faults or not.

This solution fails to detect slow faults in HBase even under
our most severe delay of 1 s. The main reason is that the
LvT patterns of distributed systems are different from those
of storage devices, making the model rather biased. In the
original context, slow faults in NVMe SSDs cause latency to
jump from tens of microseconds to milliseconds or seconds,
while throughput remains moderate. In contrast, in HBase,
a mild delay like 10 ms already degrades the throughput by
83%. We evaluate other systems and test different workloads.
The results all show that this approach is not robust against

0.1

1

10

100

1000

0 5K 10K 15K

Throughput (ops/sec)

L
a

te
n

c
y
 (

m
s
)

Fitted
data

delay
1ms

delay
10ms

delay
100ms

delay
1s

(a) PERSEUS

0

10

20

30

40

50 75 100 125 150

Time (s)

#
 o

f
ti
m

e
o

u
ts

Network delay 1ms 10ms 100ms 1s

(b) IASO

** **************************** **************************** **************************** **************************** **************************** ****************************0

25

50

75

100

100us 1ms 10ms 100ms 200ms 300ms 400ms 500ms

Network delay

P
e

rf
o

rm
a

n
c
e

D
e

g
ra

d
a

ti
o

n
 (

%
)

MultiPaxos EPaxos Copilot

(c) Copilot

Figure 8: Evaluation of advanced fail-slow solutions. In Copilot (c), we mark the system with the smallest degradation using a blue asterisk.

slow faults in distributed systems.

IASO. IASO [57] is a peer-based, node-level fail-slow detec-
tion and mitigation framework for distributed systems. It relies
on the deployed systems to emit timeout signals, converts them
into a score, and compares the scores across nodes to detect
slow ones (i.e., nodes with higher scores than their peers).

However, since these timeouts are mostly static and over-
conservative (Section 4.1), the effectiveness of IASO is limited.
Figure 8b shows the number of timeouts per second as we
inject different network delays to HBase (during the blue
shaded area). Clearly, HBase only emits notable timeouts
when the delay reaches 100 ms. This coincides with our
prior study in Table 3, where HBase has employed a 100 ms
warning threshold for slow syncs. Tuning timeout thresholds
may help IASO detect milder delays (e.g., ≤10 ms), yet it
is time-consuming to do so and does not adapt to different
workloads, as evidenced in Section 3.4.

Copilot. Copilot [54] is the first 1-slowdown-tolerant con-
sensus protocol for quorum-based systems. It introduces two
leaders that proactively add redundancy to all stages of the
execution flow, so that any one slow replica (be it leader or
follower) will not bottleneck the performance.

We evaluate Copilot and its two baselines (MultiPaxos [44,
51] and EPaxos [53]) using its original benchmark. Figure 8c
presents their performance degradation under different net-
work delays. Faults are injected to one of the pilots for Copilot,
the leader in MultiPaxos, and one arbitrary node in EPaxos.
We outline the following observations.

First, even under the mildest delay of 100 us, Copilot still
incurs a degradation of 35%. Second, Copilot only yields the
smallest degradation under a 10 ms delay. The root cause lies
in two sets of static configurations. ❶ Copilot lets the fast pilot
take over the work of the other slow pilot if the latter does
not respond within 10 ms (i.e., fast-takeover timeout). When
the slowdowns are less than 10 ms, Copilot simply waits. This
explains why Copilot is not optimal until 10 ms. ❷ When
the delays are above 100 ms (i.e., heartbeat sending interval),
normal replicas will not receive heartbeats from the slow pilot
in time. However, the slow pilot will not be marked as dead
and still function until heartbeats are missing for more than 1 s
(i.e., heartbeat missing interval). This explains why Copilot
still has a higher degradation when delays are above 100 ms.

6 An Adaptive Fail-Slow Detection Library
A consistent theme among our study’s findings is that
slow faults have highly diverse and dynamic characteristics.
Changes (even small ones) in the workload, deploying envi-
ronment, fault severity, location, etc., can lead to dramatically
different consequences. While developers become increas-
ingly aware of the fail-slow problem and start to address it,
the current practice of using static thresholds can hardly ac-
commodate the characteristics of slow faults. We advocate for
introducing adaptive designs [39] into slow-fault handling.

6.1 Limitations of Existing Solutions
As Section 5 shows, recent work does not address the dynamic
nature of slow faults. Additionally, solutions such as Perseus
and IASO are designed for operators to monitor systems
as black boxes. They do not offer built-in support to help
developers implement adaptive slow-fault handling within a
system at the code level. An intrinsic adaptive design tackles
the problem directly at the scene. It monitors slowness at fine
granularity, such as a function call. It also invokes targeted
actions to quickly mitigate slowness. However, realizing this
design can require significant developer efforts. A library to
reduce these efforts is desirable.

6.2 ADR: Adaptive Detection at Runtime
To address the gap, we design ADR, a lightweight adaptive
fail-slow detection library for distributed systems. Developers
use ADR as a plug-in when adding fail-slow handling code.
ADR traces some built-in variables (e.g., syncOpLatency),
automatically adapts the associated threshold variables to
decide slowness, and invokes different levels of defined actions.
We aim to achieve the following goals: (1) ease of use; (2)
accurate and fast detection; (3) low overhead; (4) robustness.

ADR can be integrated into a system by adding only few
changes. Developers have added extensive tracing code for
different operations (e.g., write) and compared these tracing
variables with static thresholds to detect slow operations. ADR
leverages such existing code and replaces the static logic in
place to make the detection adaptive.

ADR is directly motivated by the takeaways from our
study. It replaces static timeouts (§4.1) with percentile-based
detection to adapt to varying slow faults (§3.1), deploying
environment (§3.2), workloads and danger zones (§3.3). Since
percentile-based monitoring like tail latency can be diluted

saturated?

𝑇
𝑿𝒏𝒆𝒘
 …
	𝑋$
	𝑋%

hig
her

𝑻𝒊𝒎𝒆𝒏𝒆𝒘 − 𝑇𝑖𝑚𝑒&'()*(

𝑺, 𝑁,… , 𝑁,
Value state

𝑿𝒏𝒆𝒘

𝑋+,,>

Value

𝐹%, … , 𝑭𝒏𝒆𝒘 Frequency state

𝐹-++
𝐹&./

𝑭𝒏𝒆𝒘 > 𝐹-++

𝑭𝒏𝒆𝒘 < 𝐹&./

Frequency state checker

Reset

Frequency
lower

Value state checker

slo
we
r normal

Fatal Reset

𝑿𝒏𝒆𝒘 Slow

① Update value

② Update frequency
③ Check fatal

WAL.java

Synchronous Asynchronous

&

>𝑿𝒏𝒆𝒘

yes

no

Slowexecution

X = ...;
if (){
 ...
}

X T>

Figure 9: Overview of ADR.

by normal records (§3.5), ADR analyzes how frequently the
tracing variables get updated for more reliable cross-validation.
As systems employ different mitigation actions (§4.2), ADR
outputs a slowness level (slow, fatal) for developers to trigger
appropriate actions.

As shown in Figure 9, ADR monitors both the value and
the update frequency of some tracing variable defined in the
system code using sliding windows. The high-level idea is to
adapt the original thresholds used in comparison based on
historical values to identify slow data points, and distinguish
workload changes from slow faults by checking how often the
variable gets updated, i.e., update frequency.

It employs two state checkers to make decisions, which are
either triggering internal actions (reset windows) or returning
a slowness level (slow or fatal) for the system code to act
upon. If it detects a sudden increase in the update frequency, it
assumes the system is under a heavier workload and resets all
sliding windows to adapt. Conversely, if the update frequency
drops, due to either a slow fault or a lighter workload, ADR
further checks the values of the traced variable: if they show a
sustained slowdown, ADR identifies a slow fault and triggers
a fatal action; otherwise, it adapts to a lighter workload in the
same manner. We describe each step below.
❶ Update value. When a new value of the tracing variable
is updated (𝑋𝑛𝑒𝑤), ADR stores it into a sliding window of
historical values. Initially we use the original threshold 𝑇 ,
preserving the default behavior, until the sliding window
is saturated. We then calculate the 99𝑡ℎ percentile as the
adaptive threshold (𝑋𝑝99). If the new response is higher than
the threshold (potentially slow),we further query the frequency
state checker in Step 3. If the frequency is decreasing, we mark
this response as slow and store its state in a sliding window of
historical states (to check for continuous slowdown later).
❷ Update frequency. When a new value is updated, ADR
also calculates the timestamp difference between the new and
last value. We divide 1 s by the difference to get the update
frequency of the tracing variable (unit: response/second),
stored using a sliding window. Then, ADR calculates the
average and standard deviation of the frequency window
and derives average+ stdDev (average− stdDev) as the upper
(lower) bound. A frequency higher than the upper bound

indicates a potential workload increase (e.g., a burst of requests
or heavier workload), while a frequency lower than the lower
bound indicates either a decrease in workload intensity or a
slow fault. We maintain another sliding window of frequency
states to check for continuous frequency changes later.
❸ Check fatal. Finally, ADR checks the frequency and
value state windows to distinguish workload changes from
continuous slow faults. If the frequency is continuously higher,
the system may experience a workload increase and ADR
will reset all sliding windows and be ready to adapt new
workload. If the frequency is continuously lower, ADR would
cross-validate with value states: if the value state indicates
a continuous slowdown, ADR would trigger a fatal action if
needed; otherwise, the system may experience a workload
decrease and all windows will be reset.
Adaptive threshold. ADR calculates the 99𝑡ℎ percentile as an
adaptive threshold. This does not mean ADR will always treat
1% of total responses as slow. Instead, ADR cross-validates
with frequency states to check if the frequency is continuously
decreasing. In this case, ADR can accurately detect slow faults
while not emitting false alarms due to workload variations.
Dynamic window length. The length of all sliding windows
is set to be positively correlated with the frequency (i.e., 10 ×
current frequency). This is to make sure that the window size
is always proportional and adaptive to any frequency change.
State checkers. ADR uses two state checkers to monitor
continuous slowdown and workload changes. The value state
checker inspects the most recent 𝑛 value records, and checks
if more than half of them are slow; the frequency state checker
examines the most recent 𝑛 frequency states (which represent
heavier or lighter workloads) to see if more than half of them
are persistent. We choose 𝑛 to be equal to the current update
frequency (i.e., number of updates in the last second). For
example, when the frequency drops from 1 K records/sec to
100, the checkers will only use the most recent 100 data points
instead of 1 K. This allows ADR to quickly adapt to workload
changes while avoiding dilution of slow fault records.

ADR also considers the case when slow faults occur during
the data collection phase: when the value window is not
populated yet to draw a 𝑋𝑝99 adaptive threshold. In this case,
ADR relies solely on the frequency state checker and resets
all windows when the update frequency changes notably.
Example. Figure 10 shows the use case of ADR in HBase.
Originally, HBase already includes tracing code for the WAL
sync. The latest sync time is stored in timeInNanos (a tracing
variable). It further defines two static threshold variables,
slowSyncNs (line 2) and rollOnSyncNs (line3), and uses
two statements (lines 5 and 8) to check if the sync time exceeds
the thresholds. Different actions would be taken accordingly,
emitting a warning (line 7) or rolling WAL (line 10).

With ADR, the original parameters inside the “if” conditions
are retained but wrapped up using ADR’s APIs. Specifically,
we call isWarn() in line 6 to compare the latest sync time

1 // Default static thresholds
2 long slowSyncNs = TimeUnit.MILLISECONDS.toNanos(100);
3 long rollOnSyncNs = TimeUnit.SECONDS.toNanos(10);
4 void postSync(final long timeInNanos, ...) {
5 - if (timeInNanos > slowSyncNs) {
6 + if (ADR.isWarn(timeInNanos, ">", slowSyncNs)) {
7 LOG.info("Slow sync detected.");
8 - if (timeInNanos > rollOnSyncNs) {
9 + if (ADR.isFatal(timeInNanos, ">", rollOnSyncNs)) {

10 requestLogRoll(SLOW_SYNC);
11 }
12 }

Figure 10: Applying ADR in HBase. Lines with ’-’ correspond to
HBase’s original slow-fault detection using static timeouts. Lines
with ’+’ show how ADR is integrated into HBase.

Setup Warning threshold Fatal threshold
Static-1 1 ms 10 ms
Static-2 10 ms 100 ms
Static-3 100 ms 1 s

Table 4: Evaluation setups for the three static schemes.

with an adaptive threshold. Then we use isFatal() in line 9
to check if there is a continuous slowdown and frequency
change (or if the latest value exceeds the default threshold). If
so, a log roll would be triggered per developers’ design.
Limitations. ADR cannot detect slow faults that appear
during system start-up. Operators at the scene are typically
able to monitor and handle such cases manually. Additionally,
since ADR relies on update frequency to distinguish workload
changes from slow faults, it may misclassify slow faults that
occur precisely during workload transitions. Finally, ADR
assumes developers already know where to check for slow
faults. We believe a keyword-based search of potential code
locations for instrumentation (§6.3) can be a useful addition.

6.3 Evaluation
Our evaluation aims to answer: (1) can ADR effectively detect
and mitigate slow faults of varying severity? (2) is ADR robust
to different and dynamic workloads? (3) what is the overhead
of ADR at runtime?
Implementation and Baselines. We implement ADR in both
Java and Go (∼400 lines), and integrate it into HBase and
CRDB. We use a keyword-based approach to automatically
search for potential variables that can be traced. For example,
in HBase, we first identify 57 variables. Among them, 9 exactly
match the use case of ADR (comparing with a default static
threshold) and are traced; the rest are either not timeouts, part
of external APIs (e.g., timeouts in protobuf), or triggering no
mitigation action (e.g., only logging the event).

We use the testing pipeline (Section 2.1) to inject slow
faults with varying severity and workloads. Each experiment
runs for 5 minutes and we inject a fault of 2 minutes starting
from 90 seconds. Each set of experiments is repeated 50 times.

We compare ADR with both the original implementation
(i.e., vanilla) and three sets of static schemes. Since most
studied systems (including HBase andCRDB) employ a typical
two-stage timeout mechanism (§4.1), we set two thresholds (a

Vanilla Static-2 Static-3 IASO-RB IASO-SD ADR

F
a
il
ed

F
a
il
ed

F
a
il
ed

F
a
il
ed

0

25

50

75

100

1ms 10ms 100ms 1s

Network delay

D
e

g
ra

d
.
(%

)

Figure 11: Degradation of HBase using ADR and the baselines under
different network delays. Static-1 is too sensitive and fails the cluster.
IASO-RB: IASO with reboot; IASO-SD: IASO with shutdown.

0

25

50

75

100

(%
)

(a) Degradation

0

1

2

3

4

5

(s
)

(b) Time to detect

-2
0

5

10

1 8 32 1 8 32 1 8 32 1 8 32 1 8 32 1 8 32

10K 1M 10K 1M 10K 1M

readonly mixed writeonly

Thread count / record count / workload

(%
)

(c) Overhead

Figure 12: HBase using ADR under different workloads. The blue
dashed line in (a), (b), and (c) corresponds to the degradation of
vanilla HBase, the average time to detect in mixed and write-only
workloads, and the average overhead, respectively.

warning and a fatal one) for each setup. The threshold values
of the three static schemes are chosen according to the delays
injected, so that they are the optimal ones for the corresponding
slow faults. For example, Static-1 with a warning threshold of
1 ms would be the optimal one to detect a delay of 1 ms

We also compare ADR with IASO [57] (see Section 5). We
have fine-tuned IASO’s parameters and chosen the optimal
ones under our testing pipeline. IASO employs its own miti-
gation: upon detecting fail-slow, it will first try to reboot the
service instance (i.e., IASO-RB). If the reboot does not work,
IASO will then try to shut down the slow node (i.e., IASO-SD).
Perseus [49] is not chosen as it is an offline detection solution.
Tolerance of Varying Slow Faults. Figure 11 shows the
degradation of HBase under different network delays. ADR
helps mitigate slow faults under all injected delays and is
always better even than the optimal static settings. For example,
under a 100 ms delay, ADR reduces the degradation from
97% (vanilla) to 32% (67% reduction). In comparison, the
optimal Static-2 case, IASO-RB, and IASO-SD yield a higher
degradation of 37%, 38%, and 54%, respectively.

Similarly in CRDB, the average degradation of the vanilla,
Static-2, and Static-3 are 52%, 3%, and 44%, respectively,

Vanilla ADR

10
2

10
3

10
4

10
5

0 60 120 180 240

Time (s)

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
) (a) From heavy to light

10
2

10
3

10
4

10
5

0 60 120 180 240

Time (s)

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
) (b) From light to heavy

Figure 13: HBase under dynamic workloads. The light (heavy) one
refers to mixed (write-only) workloads with 1 (32) YCSB client
thread(s) and 10K (1M) records. Workload changes at 120 s.

while ADR results in a 7% performance gain.
Tolerance Under Varying Workloads. Figure 12 shows the
performance of HBase with ADR under diverse workloads.
We inject a 100 ms network delay.

ADR decreases the degradation from 98% (vanilla) to as
low as 10% (Figure 12a). Note that ADR does not mitigate
read-only workloads. This is because the variables that ADR
trace are all related to write operations, due to the fact that
the system’s fault-tolerance mechanisms are not engaged or
required as much for reads. Nevertheless, we believe ADR
will still work well given any critical read variables are traced.
As a result, ADR helps reduce the degradation in mixed and
write-only workloads by 16–80% and 43–90% in HBase, and
by 20–96% and 5–66% in CRDB, respectively.

Recall the fine-tuned HBase incurs cluster failures under
other workloads (Section 3.4). ADR, however, not only yields
lower degradation than the optimal static settings, but also
maintains system availability with zero failures.

As Figure 12c shows, the average time to detect in mixed
and write-only workloads are 1.3 s and 0.9 s, respectively. This
shows that ADR detects slow faults in a timely manner.

ADR is robust to dynamic workloads. As shown in Fig-
ure 13, system throughput is on par with or without ADR.
This indicates that ADR can adapt to workload changes with
minimal impact on system performance.
Overhead. Figure 12d shows the overhead of ADR. The
average overhead across all workloads is 2.8%. With this low
overhead, ADR can be integrated into even more modules.
7 Related Work
Since faults are frequent in distributed systems and fault
tolerance is crucial, understanding failures has been a constant
theme in distributed system research. Numerous empirical
studies [24, 25, 27, 28, 32, 34–36, 41–43, 46, 47, 56, 65] have
characterized failures in various settings. They generally have
different focuses and are complementary to each other.

One common category is to analyze why certain systems
fail and identify the high-level causes. For example, an early
prominent study by Oppenheimer et al. [56] examined the
root causes of failures in commercial Internet services. The
findings pointed out that operator errors caused most failures.
Yuan et al. [65] studied user-reported failures in open-source
distributed systems and found that more than half of the

catastrophic failures could have been detected by simple
testing of error-handling code. Other studies in this category
were conducted on Hadoop cluster [58], Microsoft Azure
services [46], jobs in Google computer cluster [29], SCOPE
jobs in Microsoft Bing [45], cloud servers [62], etc.

More recent studies analyze complex failure modes that
are under-explored yet increasingly common in large dis-
tributed systems, such as gray failures [42], partial failures [47],
metastable failures [41], limplock [32], and silent semantic
violations [48]. These studies focus on software failures. Sev-
eral other studies focus on failures related to hardware, such
as network partitions [25], fail-slow hardware [36,49,50], and
silent data corruption in CPUs [31, 40, 63]. Our study is moti-
vated by recent fail-slow hardware studies. We shift the focus
to the impact of fail-slow events to software. Our work revisits
the early limplock study [32], which discusses the worst-case
scenarios using microbenchmarks. In contrast, we focus on
the operational impact of slow faults for modern distributed
systems under realistic workloads. We explore a broad spec-
trum of failure space. For example, we analyze how nuanced
slow faults with diverse severity (not just worst case), location,
etc., degrade system performance. We measure how varying
cloud benchmarks, danger zones, deploying environments, tail
latency measurements, and fine-tuning configurations impact
slow-fault tolerance. We also evaluate the effectiveness of
latest fail-slow detection and mitigation solutions.

A number of solutions have been proposed to tolerate slow-
ness (performance issues) in distributed systems. A typical
technique is speculative execution [26,60,66], which launches
a backup task when a task is slow (straggling). Copilot [54]
enhances the consensus protocol by using two distinguished
replicas to tolerate slow faults. DepFast [64] provides pro-
gramming interfaces for developers to implement slow-tolerant
protocols. Our study aims to provide insights for distributed
systems designers to improve slow-fault tolerance solutions.

8 Conclusion
Recent studies have increased the community’s awareness
of the fail-slow problem. Nevertheless, fail-slow tolerance
remains a challenging topic to approach. We present a compre-
hensive study that analyzes the nuances of fail-slow tolerance
in current systems. Our study reveals that existing efforts do
not accommodate the highly dynamic and sensitive charac-
teristics of slow faults. We showcase how adopting a simple
adaptive design can significantly increase the effectiveness of
a system’s existing slow-fault handling mechanisms.

Acknowledgments
We thank our shepherd Kang Chen, and the anonymous review-
ers for their insightful comments. We thank CloudLab [33] for
providing the resources for us to run experiments. This work
was supported in part by NSF grants CNS-2317698, CNS-
2317751, and CCF-2318937. Ruiming Lu’s travel expenses
to attend the conference is funded by NSFC 623B2072.

References
[1] Baseline scheme of the openmessaging benchmark

framework. https://github.com/openmessaging/
benchmark/blob/master/driver-kafka/kafka-
throughput.yaml.

[2] Blockade: testing network failures and partitions
in distributed applications. https://github.com/
worstcase/blockade.

[3] Charybdefs: Scylladb fault injection filesystem. https:
//github.com/scylladb/charybdefs.

[4] Default theshold of slow sync count in hbase.
https://github.com/apache/hbase/blob/
rel/2.5.6/hbase-server/src/main/java/
org/apache/hadoop/hbase/regionserver/wal/
AbstractFSWAL.java#L136.

[5] Default value of slow sync threshold in hbase.
https://github.com/apache/hbase/blob/
rel/2.5.6/hbase-server/src/main/java/
org/apache/hadoop/hbase/regionserver/wal/
AbstractFSWAL.java#L131.

[6] etcd v3 benchmark tool. https://github.com/etcd-
io/etcd/tree/main/tools/benchmark.

[7] Github issue of stalled leader detection in etcd. https:
//github.com/etcd-io/etcd/issues/15247.

[8] Hardware recommendations for etcd v3.5. https://
etcd.io/docs/v3.5/op-guide/hardware/.

[9] Hbase-22301: Consider rolling the wal if the hdfs
write pipeline is slow. https://issues.apache.
org/jira/browse/HBASE-22301.

[10] Official document of kafka on delivery timeout.
https://kafka.apache.org/documentation/
#producerconfigs_delivery.timeout.ms.

[11] Official document of kafka on request timeout.
https://kafka.apache.org/documentation/
#brokerconfigs_request.timeout.ms.

[12] Openmessaging benchmark framework. https://
github.com/openmessaging/benchmark.

[13] Public development document of etcd livez and
readyz probe. https://docs.google.com/
document/d/1PaUAp76j1X92h3jZF47m32oVlR8Y-
p-arB5XOB7Nb6U.

[14] Source code of slow disk detection in cockroachdb.
https://github.com/cockroachdb/cockroach/
blob/v23.1.11/pkg/storage/pebble.go#L1246-
L1275.

[15] Source code of slow logging detection in cockroachdb.
https://github.com/cockroachdb/cockroach/
blob/v23.1.11/pkg/util/log/file.go#L242-
L284.

[16] Source code of slow query detection in cassan-
dra. https://issues.apache.org/jira/browse/
CASSANDRA-12403.

[17] Source code of slow read processor detection in
hdfs. https://github.com/apache/hadoop/
blob/release-3.3.6-RC0/hadoop-hdfs-
project/hadoop-hdfs-client/src/main/java/
org/apache/hadoop/hdfs/DataStreamer.java#
L1138-L1149.

[18] Synchronous scheme of the openmessaging benchmark
framework. https://github.com/openmessaging/
benchmark/blob/master/driver-kafka/kafka-
sync.yaml.

[19] Sysbench: Scriptable database and system performance
benchmark. https://github.com/akopytov/
sysbench.

[20] Test case of handling stalled writes in etcd. https://
github.com/etcd-io/etcd/blob/main/tests/
e2e/v3_lease_no_proxy_test.go#L116-L117.
Accessed Apr 18, 2024 at commit 9ac4f33.

[21] Unit test of slow detection in cassandra using assert.
https://github.com/apache/cassandra/blob/
trunk/test/unit/org/apache/cassandra/db/
monitoring/MonitoringTaskTest.java#L191-
L201. Accessed Apr 18, 2024 at commit 209c35a.

[22] Unit test of slow detection in cassandra using thread.sleep.
https://github.com/apache/cassandra/blob/
trunk/test/unit/org/apache/cassandra/db/
monitoring/MonitoringTaskTest.java#L118.
Accessed Apr 18, 2024 at commit 209c35a.

[23] Hervé Abdi and Lynne J. Williams. Principal component
analysis. WIREs Computational Statistics, 2010.

[24] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan,
and Samer Al-Kiswany. Toward a generic fault toler-
ance technique for partial network partitioning. In 14th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’20, pages 351–368. USENIX
Association, November 2020.

[25] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta,
and Samer Al-Kiswany. An analysis of network-
partitioning failures in cloud systems. In Proceedings of
the 13th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI ’18, page 51–68, USA,
2018. USENIX Association.

https://github.com/openmessaging/benchmark/blob/master/driver-kafka/kafka-throughput.yaml
https://github.com/openmessaging/benchmark/blob/master/driver-kafka/kafka-throughput.yaml
https://github.com/openmessaging/benchmark/blob/master/driver-kafka/kafka-throughput.yaml
https://github.com/worstcase/blockade
https://github.com/worstcase/blockade
https://github.com/scylladb/charybdefs
https://github.com/scylladb/charybdefs
https://github.com/apache/hbase/blob/rel/2.5.6/hbase-server/src/main/java/org/apache/hadoop/hbase/regionserver/wal/AbstractFSWAL.java#L136
https://github.com/apache/hbase/blob/rel/2.5.6/hbase-server/src/main/java/org/apache/hadoop/hbase/regionserver/wal/AbstractFSWAL.java#L136
https://github.com/apache/hbase/blob/rel/2.5.6/hbase-server/src/main/java/org/apache/hadoop/hbase/regionserver/wal/AbstractFSWAL.java#L136
https://github.com/apache/hbase/blob/rel/2.5.6/hbase-server/src/main/java/org/apache/hadoop/hbase/regionserver/wal/AbstractFSWAL.java#L136
https://github.com/apache/hbase/blob/rel/2.5.6/hbase-server/src/main/java/org/apache/hadoop/hbase/regionserver/wal/AbstractFSWAL.java#L131
https://github.com/apache/hbase/blob/rel/2.5.6/hbase-server/src/main/java/org/apache/hadoop/hbase/regionserver/wal/AbstractFSWAL.java#L131
https://github.com/apache/hbase/blob/rel/2.5.6/hbase-server/src/main/java/org/apache/hadoop/hbase/regionserver/wal/AbstractFSWAL.java#L131
https://github.com/apache/hbase/blob/rel/2.5.6/hbase-server/src/main/java/org/apache/hadoop/hbase/regionserver/wal/AbstractFSWAL.java#L131
https://github.com/etcd-io/etcd/tree/main/tools/benchmark
https://github.com/etcd-io/etcd/tree/main/tools/benchmark
https://github.com/etcd-io/etcd/issues/15247
https://github.com/etcd-io/etcd/issues/15247
https://etcd.io/docs/v3.5/op-guide/hardware/
https://etcd.io/docs/v3.5/op-guide/hardware/
https://issues.apache.org/jira/browse/HBASE-22301
https://issues.apache.org/jira/browse/HBASE-22301
https://kafka.apache.org/documentation/#producerconfigs_delivery.timeout.ms
https://kafka.apache.org/documentation/#producerconfigs_delivery.timeout.ms
https://kafka.apache.org/documentation/#brokerconfigs_request.timeout.ms
https://kafka.apache.org/documentation/#brokerconfigs_request.timeout.ms
https://github.com/openmessaging/benchmark
https://github.com/openmessaging/benchmark
https://docs.google.com/document/d/1PaUAp76j1X92h3jZF47m32oVlR8Y-p-arB5XOB7Nb6U
https://docs.google.com/document/d/1PaUAp76j1X92h3jZF47m32oVlR8Y-p-arB5XOB7Nb6U
https://docs.google.com/document/d/1PaUAp76j1X92h3jZF47m32oVlR8Y-p-arB5XOB7Nb6U
https://github.com/cockroachdb/cockroach/blob/v23.1.11/pkg/storage/pebble.go#L1246-L1275
https://github.com/cockroachdb/cockroach/blob/v23.1.11/pkg/storage/pebble.go#L1246-L1275
https://github.com/cockroachdb/cockroach/blob/v23.1.11/pkg/storage/pebble.go#L1246-L1275
https://github.com/cockroachdb/cockroach/blob/v23.1.11/pkg/util/log/file.go#L242-L284
https://github.com/cockroachdb/cockroach/blob/v23.1.11/pkg/util/log/file.go#L242-L284
https://github.com/cockroachdb/cockroach/blob/v23.1.11/pkg/util/log/file.go#L242-L284
https://issues.apache.org/jira/browse/CASSANDRA-12403
https://issues.apache.org/jira/browse/CASSANDRA-12403
https://github.com/apache/hadoop/blob/release-3.3.6-RC0/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/DataStreamer.java#L1138-L1149
https://github.com/apache/hadoop/blob/release-3.3.6-RC0/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/DataStreamer.java#L1138-L1149
https://github.com/apache/hadoop/blob/release-3.3.6-RC0/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/DataStreamer.java#L1138-L1149
https://github.com/apache/hadoop/blob/release-3.3.6-RC0/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/DataStreamer.java#L1138-L1149
https://github.com/apache/hadoop/blob/release-3.3.6-RC0/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/DataStreamer.java#L1138-L1149
https://github.com/openmessaging/benchmark/blob/master/driver-kafka/kafka-sync.yaml
https://github.com/openmessaging/benchmark/blob/master/driver-kafka/kafka-sync.yaml
https://github.com/openmessaging/benchmark/blob/master/driver-kafka/kafka-sync.yaml
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://github.com/etcd-io/etcd/blob/main/tests/e2e/v3_lease_no_proxy_test.go#L116-L117
https://github.com/etcd-io/etcd/blob/main/tests/e2e/v3_lease_no_proxy_test.go#L116-L117
https://github.com/etcd-io/etcd/blob/main/tests/e2e/v3_lease_no_proxy_test.go#L116-L117
https://github.com/apache/cassandra/blob/trunk/test/unit/org/apache/cassandra/db/monitoring/MonitoringTaskTest.java#L191-L201
https://github.com/apache/cassandra/blob/trunk/test/unit/org/apache/cassandra/db/monitoring/MonitoringTaskTest.java#L191-L201
https://github.com/apache/cassandra/blob/trunk/test/unit/org/apache/cassandra/db/monitoring/MonitoringTaskTest.java#L191-L201
https://github.com/apache/cassandra/blob/trunk/test/unit/org/apache/cassandra/db/monitoring/MonitoringTaskTest.java#L191-L201
https://github.com/apache/cassandra/blob/trunk/test/unit/org/apache/cassandra/db/monitoring/MonitoringTaskTest.java#L118
https://github.com/apache/cassandra/blob/trunk/test/unit/org/apache/cassandra/db/monitoring/MonitoringTaskTest.java#L118
https://github.com/apache/cassandra/blob/trunk/test/unit/org/apache/cassandra/db/monitoring/MonitoringTaskTest.java#L118

[26] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker,
and Ion Stoica. Effective straggler mitigation: Attack of
the clones. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), NSDI
’13, pages 185–198, Lombard, IL, April 2013. USENIX
Association.

[27] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Fail-stutter fault tolerance. In Proceedings
of the Eighth Workshop on Hot Topics in Operating
Systems, HotOS ’01, pages 33–, Washington, DC, USA,
2001. IEEE Computer Society.

[28] Nathan Bronson, Abutalib Aghayev, Aleksey Charapko,
and Timothy Zhu. Metastable failures in distributed
systems. In Proceedings of the Workshop on Hot Top-
ics in Operating Systems, HotOS ’21, page 221–227,
New York, NY, USA, 2021. Association for Computing
Machinery.

[29] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman.
Failure analysis of jobs in compute clouds: A Google
cluster case study. In 2014 IEEE 25th International
Symposium on Software Reliability Engineering, ISSRE
’14, pages 167–177, 2014.

[30] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[31] Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon,
Chris Mason, Tejasvi Chakravarthy, Bharath Muthiah,
and Sriram Sankar. Silent data corruptions at scale,
2021.

[32] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:
Understanding the impact of limpware on scale-out cloud
systems. In Proceedings of the 4th Annual Symposium
on Cloud Computing, SoCC ’13, New York, NY, USA,
2013. Association for Computing Machinery.

[33] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuangching Wang,Glenn Ricart,Larry Landweber,Chip
Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin
Kar, and Prabodh Mishra. The design and operation of
CloudLab. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pages 1–14, Renton, WA, July
2019. USENIX Association.

[34] Daniel Ford, François Labelle, Florentina I. Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie

Grimes, and Sean Quinlan. Availability in globally
distributed storage systems. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI ’10, page 61–74, USA, 2010.
USENIX Association.

[35] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama, and
Kurnia J. Eliazar. Why does the cloud stop computing?:
Lessons from hundreds of service outages. In Proceed-
ings of the 7th ACM Symposium on Cloud Computing,
SOCC ’16, pages 1–16, October 2016.

[36] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin
Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,
Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe
Hao, and Huaicheng Li. Fail-Slow at scale: Evidence of
hardware performance faults in large production systems.
In 16th USENIX Conference on File and Storage Tech-
nologies, FAST ’18, pages 1–14, Oakland, CA, February
2018. USENIX Association.

[37] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center network
latency measurement and analysis. In Proceedings of
the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, page 139–152,
New York, NY, USA, 2015. Association for Computing
Machinery.

[38] Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang,
Pu Zhang, Yingwei Luo, Tom Bergan, Peter Bodik,
Madan Musuvathi, Zheng Zhang, and Lidong Zhou.
Failure recovery: when the cure is worse than the disease.
In Proceedings of the 14th USENIX Conference on Hot
Topics in Operating Systems, HotOS ’13, page 8, USA,
2013. USENIX Association.

[39] T. Herman and M. Gouda. Adaptive programming. IEEE
Transactions on Software Engineering, 17(09):911–921,
sep 1991.

[40] Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul,
Rama Govindaraju, Parthasarathy Ranganathan, David E.
Culler, and Amin Vahdat. Cores that don’t count. In
Proceedings of the Workshop on Hot Topics in Operating
Systems, HotOS ’21, page 9–16, New York, NY, USA,
2021. Association for Computing Machinery.

[41] Lexiang Huang, Matthew Magnusson, Abishek Ban-
galore Muralikrishna, Salman Estyak, Rebecca Isaacs,

Abutalib Aghayev, Timothy Zhu, and Aleksey Chara-
pko. Metastable failures in the wild. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI ’22, pages 73–90, Carlsbad, CA, July
2022. USENIX Association.

[42] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The Achilles’ heel of cloud-
scale systems. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems, HotOS ’17, British
Columbia, Canada, May 2017. ACM.

[43] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and
Arkady Kanevsky. Are disks the dominant contributor
for storage failures? a comprehensive study of storage
subsystem failure characteristics. In 6th USENIX Con-
ference on File and Storage Technologies, FAST ’08,
San Jose, CA, February 2008. USENIX Association.

[44] Leslie Lamport. The part-time parliament. In ACM
Transactions on Computer Systems, volume 16 of TOCS,
page 133–169, 1998.

[45] Sihan Li,Hucheng Zhou,Haoxiang Lin,Tian Xiao,Haibo
Lin, Wei Lin, and Tao Xie. A characteristic study on
failures of production distributed data-parallel programs.
In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, page 963–972. IEEE
Press, 2013.

[46] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman
Nath. What bugs cause production cloud incidents? In
Proceedings of the Workshop on Hot Topics in Operating
Systems, HotOS ’19, page 155–162, New York, NY, USA,
2019. Association for Computing Machinery.

[47] Chang Lou, Peng Huang, and Scott Smith. Understand-
ing, detecting and localizing partial failures in large sys-
tem software. In 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’20, pages
559–574, Santa Clara, CA, February 2020. USENIX
Association.

[48] Chang Lou, Yuzhuo Jing, and Peng Huang. Demysti-
fying and checking silent semantic violations in large
distributed systems. In Proceedings of the 16th USENIX
Symposium on Operating Systems Design and Implemen-
tation, OSDI ’22, pages 91–107, Carlsbad, CA, USA,
July 2022. USENIX Association.

[49] Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu,
Zhaosheng Zhu, Mengtian Wang, Zongpeng Zhu, Guang-
tao Xue, Jiwu Shu, Minglu Li, and Jiesheng Wu. Perseus:
A Fail-Slow detection framework for cloud storage sys-
tems. In 21st USENIX Conference on File and Storage
Technologies, FAST ’23, pages 49–64, Santa Clara, CA,
February 2023. USENIX Association.

[50] Ruiming Lu, Erci Xu, Yiming Zhang, Zhaosheng Zhu,
Mengtian Wang, Zongpeng Zhu, Guangtao Xue, Minglu
Li, and Jiesheng Wu. NVMe SSD failures in the field:
the Fail-Stop and the Fail-Slow. In 2022 USENIX Annual
Technical Conference, USENIX ATC ’22, pages 1005–
1020, Carlsbad, CA, July 2022. USENIX Association.

[51] David Mazières. Paxos made practical.
https://www.scs.stanford.edu/~dm/home/
papers/paxos.pdf, 2007.

[52] Edgar Costa Molero, Stefano Vissicchio, and Laurent
Vanbever. Fast in-network gray failure detection for isps.
In Proceedings of the ACM SIGCOMM 2022 Conference,
SIGCOMM ’22, page 677–692, New York, NY, USA,
2022. Association for Computing Machinery.

[53] Iulian Moraru, David G. Andersen, and Michael Kamin-
sky. There is more consensus in egalitarian parliaments.
In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, page 358–372,
New York, NY, USA, 2013. Association for Computing
Machinery.

[54] Khiem Ngo, Siddhartha Sen, and Wyatt Lloyd. Tol-
erating slowdowns in replicated state machines using
copilots. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’20, pages
583–598. USENIX Association, November 2020.

[55] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
305–319, Philadelphia, PA, June 2014. USENIX Asso-
ciation.

[56] David Oppenheimer, Archana Ganapathi, and David A.
Patterson. Why do Internet services fail, and what can
be done about it? In Proceedings of the 4th Conference
on USENIX Symposium on Internet Technologies and
Systems, USITS ’03, March 2003.

[57] Biswaranjan Panda, Deepthi Srinivasan, Huan Ke, Karan
Gupta, Vinayak Khot, and Haryadi S. Gunawi. IASO:
A Fail-Slow detection and mitigation framework for
distributed storage services. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 47–62,
Renton, WA, July 2019. USENIX Association.

[58] Ariel Rabkin and Randy Katz. How Hadoop clusters
break. IEEE Softw., 30(4):88–94, jul 2013.

[59] Erich Schubert, Jörg Sander, Martin Ester, Hans Kriegel,
and Xiaowei Xu. Dbscan revisited, revisited: Why and
how you should (still) use dbscan. ACM Transactions
on Database Systems, 2017.

https://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
https://www.scs.stanford.edu/~dm/home/papers/paxos.pdf

[60] Riza O. Suminto, Cesar A. Stuardo, Alexandra Clark,
Huan Ke,Tanakorn Leesatapornwongsa,Bo Fu,Daniar H.
Kurniawan, Vincentius Martin, Maheswara Rao G. Uma,
and Haryadi S. Gunawi. PBSE: A robust path-based
speculative execution for degraded-network tail tolerance
in data-parallel frameworks. In Proceedings of the
2017 Symposium on Cloud Computing, SoCC ’17, page
295–308, New York, NY, USA, 2017. Association for
Computing Machinery.

[61] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
NetBouncer: Active device and link failure localiza-
tion in data center networks. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 599–614, Boston, MA, February 2019.
USENIX Association.

[62] Kashi Venkatesh Vishwanath and Nachiappan Nagappan.
Characterizing cloud computing hardware reliability.
In Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC ’10, page 193–204, New York, NY,
USA, 2010. Association for Computing Machinery.

[63] Shaobu Wang, Guangyan Zhang, Junyu Wei, Yang Wang,
Jiesheng Wu, and Qingchao Luo. Understanding silent
data corruptions in a large production cpu population.
In Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP ’23, page 216–230, New York,
NY, USA, 2023. Association for Computing Machinery.

[64] Andrew Yoo, Yuanli Wang, Ritesh Sinha, Shuai Mu, and
Tianyin Xu. Fail-slow fault tolerance needs programming
support. In Proceedings of the Workshop on Hot Topics in
Operating Systems,HotOS ’21, page 228–235,New York,
NY, USA, 2021. Association for Computing Machinery.

[65] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna
Rodrigues, Xu Zhao, Yongle Zhang, Pranay U. Jain,
and Michael Stumm. Simple testing can prevent most
critical failures: An analysis of production failures in
distributed data-intensive systems. In Proceedings of the
11th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’14, page 249–265, USA,
2014. USENIX Association.

[66] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy Katz, and Ion Stoica. Improving MapReduce
performance in heterogeneous environments. In Pro-
ceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI ’08, page
29–42, USA, 2008. USENIX Association.

A Fault Injection Tools
We use blockade [2] to inject network slow faults and charyb-
defs [3] to inject filesystem ones.

Blockade is a network testing tool based on Docker utilities,
allowing users to inject network failures in distributed applica-
tions. In essence, it employs Linux traffic control (tc) to inject
network delays, packet loss, and partitions. In conclusion, our
testing pipeline leverages blockade to inject delays and packet
loss to running distributed nodes.
Charybdefs is a FUSE-based fault injection filesystem with a
Thrift RPC interface for instrumentation. It simulates various
filesystem faults, such as delays, read/write errors, and disk
full. We use charybdefs to inject filesystem delays to the
running distributed systems.

B Larger Cluster Size
In Section 3, we discuss the nuanced fault tolerance of dis-
tributed systems against diverse slow faults (§3.1), different
resource limits (§3.2), and varied workloads (§3.3). However,
the discussion is based on a small cluster size (3–6 nodes).
In this section, we evaluate the impact of cluster size and
check whether our findings and observerations still persist.
We validate the findings (Findings 1-7) presented in Section 3
using CRDB and etcd under a 10-node and 20-node setup.

B.1 How Systems React to Varying Slow Faults
Figures 14 and 15 present the performance degradation of etcd
under a 10-node and 20-node setup, respectively. Although
the absolute numbers of degradation do not exactly match
with those in Figure 2, they still vary across systems as in
Finding 1. For example, under a mixed workload with delayed
network in the leader node, the degradation of 3-node etcd
cluster is 0.5%, 2%, 19%, 75%, and 96% for 100 us, 1 ms,
10 ms, 100 ms, and 1 s delays, respectively. In comparison, the
corresponding degradation of a 10-node etcd cluster is 0.5%,
1%, 9%, 51%, and 88% for the same delays, while that of a
20-node etcd cluster is 0.1%, 0.3%, 7%, 46%, and 74%.

Regarding different fault types, the average degradation
of a 10-node etcd cluster (mixed workload, injected on the
follower) under network packet loss and network delay is 10%
and 37%, respectively. This indicates that etcd is much more
sensitive (3.7× differences) to packet loss than network delay,
which is consistent with Finding 3.

Morever, slow faults still impact systems differently condi-
tioned on the fault locations. In a 10-node etcd cluster, when
we inject a 100 ms network delay to either the leader or the
follower, the degradation is 8% and 51%, respectively. This
translates to a 6.4× difference. As a result, Finding 4 also
holds in a larger cluster size.

Previously, we summarized in Finding 2 that the perfor-
mance degradation does not always increase as slow-fault
severity increases. We find this finding also holds for CRDB
with a larger cluster size. Figure 16 presents the degradation of
10-node and 20-node CRDB under different filesystem delays.
As we can see, in a 10-node CRDB under read-only setup,
the degradation under a 100 ms delay (82%) is 2.4× that of
a 1 s delay (34%). We also observe a similar trend when the

nw
flaky 1%

nw
flaky 10%

nw
flaky 40%

nw
flaky 70%

nw
delay 100us

nw
delay 1ms

nw
delay 10ms

nw
delay 100ms

nw
delay 1s

0

25

50

75

100

etcd
follower

etcd
leader

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

0

25

50

75

100

etcd
follower

etcd
leader

(a) Read-only

0

25

50

75

100

etcd
follower

etcd
leader

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

0

25

50

75

100

etcd
follower

etcd
leader

(b) Mixed

0

25

50

75

100

etcd
follower

etcd
leader

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

0

25

50

75

100

etcd
follower

etcd
leader

(c) Write-only

Figure 14: Performance degradation of 10-node etcd under different network packet loss and network delay. The darker the colors, the more
severe the faults are. Each experiment was repeated 50 times for generalizability. Error bars refer to 95% confidence intervals.

nw
flaky 1%

nw
flaky 10%

nw
flaky 40%

nw
flaky 70%

nw
delay 100us

nw
delay 1ms

nw
delay 10ms

nw
delay 100ms

nw
delay 1s

0

25

50

75

100

etcd
follower

etcd
leader

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

0

25

50

75

100

etcd
follower

etcd
leader

(a) Read-only

0

25

50

75

100

etcd
follower

etcd
leader

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

0

25

50

75

100

etcd
follower

etcd
leader

(b) Mixed

0

25

50

75

100

etcd
follower

etcd
leader

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

0

25

50

75

100

etcd
follower

etcd
leader

(c) Write-only

Figure 15: Performance degradation of 20-node etcd under different network packet loss and network delay. The darker the colors, the more
severe the faults are. Each experiment was repeated 50 times for generalizability. Error bars refer to 95% confidence intervals.

fs
delay 1ms

fs
delay 10ms

fs
delay 100ms

fs
delay 1s

0

25

50

75

100

Read-only Mixed

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

(a) 10-node CRDB

0

25

50

75

100

Read-only Mixed

(b) 20-node CRDB

Figure 16: Performance degradation of 10-node and 20-node CRDB
under different filesystem delays. The darker the colors, the more
severe the faults are. Each experiment was repeated 50 times for
generalizability. Error bars refer to 95% confidence intervals.

workload changes to mixed or the cluster size increases to 20
nodes.

To sum up, as the cluster size increases to 10 or even 20,
our general observations and findings (Findings 1-4) regard-
ing how systems are impacted by different fault types, fault
severities, and fault locations are still consistent with those in
Section 3.1.

B.2 Do Resource Limits Amplify Slow Faults?
Figure 17 presents the performance degradation when a 1 s
network delay is injected to the etcd leader node. We set
different resource limits on CPU cores (ranging from 1 to
5 cores) and memory sizes (ranging from 8G to 32G). As
we can see, either under a 10-node or 20-node setup, the
degradation of etcd is still sensitive to the amount of resources.
For example, under the 20-node setup with a per-node memory

89%

84%

86%

85%

90%

89%

89%

88%

89%8G

16G

32G

1 2 5

CPU cores

M
e

m
o

ry

(a) 10-node

81%

76%

64%

93%

82%

71%

78%

67%

72%

1 2 5

CPU cores

(b) 20-node

0%

20%

40%

60%

80%

100%

0.751.001.25

x

y

Figure 17: Performance degradation of etcd under different CPU
and memory limits. Values in each cell correspond to the average
degradation of the same set of experiments repeated 50 times. A
1 s network delay is injected to the etcd leader node. The darker the
colors, the more severe the degradation is.

of 32G, degradation ranges from 76%, 82%, to 67%, with
a per-node CPU core limit of 1, 2, 5, respectively. This is
consistent with our Finding 5 in Section 3.2.

B.3 How Workloads Affect Slow Tolerance
Figure 18 presents the performance degradation of etcd con-
ditioned on different workload patterns (read only, balanced
mix, and write only) and injected network delays (from 0 to
1 s, injected on the leader). Obviously, system degradation is
sensitive to workload patterns. For example, for a 10-node
etcd cluster under a 10 ms network delay (see Figure 18b), the
performance degradation of etcd under read-only, balanced
mix, and write-only workloads is 84%, 9%, and 4% (up to
21× differences). We also obtain similar results in a 20-node
etcd cluster or when slow faults are injected to the follower
node (see Figure 20). This is consistent with Finding 6 in
Section 3.3.

Read only Mixed Write only

0

25

50

75

100

10

0 200 400 600 800 1000

Network delay (ms)

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

(a) 10-node

0 20 40 60 80 100

Network delay (ms)

(b) 10-node, zoom-in

0

25

50

75

100

10

0 200 400 600 800 1000

Network delay (ms)

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

(c) 20-node

0 20 40 60 80 100

Network delay (ms)

(d) 20-node, zoom-in

Figure 18: Performance degradation of etcd under differnt network
delays (injected on the leader). Each set of experiment was repeated
50 times for generalizability. The shaded area highlights the “danger
zone” where performance degradation escalates dramatically. Mixed:
50% reads and 50% writes.

Moreover, danger zone (between 10% and 50% degradation)
still exists. For example, the danger zone for 10-node etcd under
a read-only workload (injected on the follower) is from 10 ms
to 50 ms (see Figure 20d). We also observe notable danger
zones in the 20-node setup or when slow faults are injected
to the leader node. This is consistent with our Finding 7 in
Section 3.3.

C Leader Re-Election
Figure 19 shows the logic diagram of why severe slow faults
on the leader can lead to better performance in etcd.

D Client-Side Reconnection in gRPC
Figure 21 shows the logic diagram of why a single slow
follower can possibly degrade the performance of the whole

B

CA
Leader

Follower

Follower

(a) “A” is slow but heartbeat can still get through in time

Client
Requests

“B” and “C” do not time out

(b) “A” is slow and heartbeat cannot get through in time

B

CA
Leader

Follower

Follower
Client

Requests

“B” first timed out
New Leader

Figure 19: Severe slow faults trigger leader re-election.

Read only Mixed Write only

0

25

50

75

100

10

0 200 400 600 800 1000

Network delay (ms)

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

(a) 10-node

0 20 40 60 80 100

Network delay (ms)

(b) 10-node, zoom-in

0

25

50

75

100

10

0 200 400 600 800 1000

Network delay (ms)

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

(c) 20-node

0 20 40 60 80 100

Network delay (ms)

(d) 20-node, zoom-in

Figure 20: Performance degradation of etcd under differnt network
delays (injected on the follower). Each set of experiment was repeated
50 times for generalizability. The shaded area highlights the “danger
zone” where performance degradation escalates dramatically. Mixed:
50% reads and 50% writes.

cluster in etcd.

E Time to Recover
Metrics and notations. To determine when the system has
recovered from slow faults, we calculate recovery time as
the time it takes for the system to reach back a throughput
that is higher than a threshold. The threshold is calculated as
avg_normal− sd_normal, where sd_normal is the standard
deviation of the series of throughput records before fault
injection. Figure 22 presents the distribution of recovery time
among all studied systems.
Recovery time in delayed filesystem and network. Systems
can recover quickly from delayed filesystem and network. As
shown in Figure 22, the average recovery time for all studied
systems under a delayed network and filesystem is 0.8s and
1.0s respectively. We do not observe a notable jump in the

Balancer

B

CA

“A” is slow but alive
Keepalive HTTP/2 Ping

stick with slow node

Balancer

B

CA
“A” is slow and failed
the keepalive health
check

Keepalive HTTP/2 Ping

stop the slow connection

Fail over to healthy node “B”

(a)

(b)

Figure 21: A slow follower can degrade cluster performance.

fs
delay 1ms

fs
delay 10ms

fs
delay 100ms

fs
delay 1s

nw
flaky 1%

nw
flaky 10%

nw
flaky 40%

nw
flaky 70%

nw
delay 100us

nw
delay 1ms

nw
delay 10ms

nw
delay 100ms

nw
delay 1s

0.0

0.5

1.0

1.5

2.0

CRDB etcd
follower

etcd
leader

R
e

c
o

v
e

ry
ti
m

e
 (

s
)

0

5

10

15

20

25

Cass. CRDB etcd
follower

etcd
leader

HBase
region

Kafka

0.0

0.5

1.0

1.5

2.0

Cass. CRDB etcd
follower

etcd
leader

HBase
region

Kafka

Figure 22: Time for performance to recover after filesystem delay (left), network packet loss (middle), and network delay (right). The darker the
colors, the more severe the faults are. Each experiment was repeated 50 times for generalizability. Error bars refer to 95% confidence intervals.

fs
delay 1ms

fs
delay 10ms

fs
delay 100ms

fs
delay 1s

nw
flaky 1%

nw
flaky 10%

nw
flaky 40%

nw
flaky 70%

nw
delay 100us

nw
delay 1ms

nw
delay 10ms

nw
delay 100ms

nw
delay 1s

0.0

0.5

1.0

1.5

CRDB etcd
follower

etcd
leader

R
e
s
id
u
a
l

im
p
a
c
t

0.0

0.5

1.0

1.5

Cass. CRDB etcd
follower

etcd
leader

HBase
region

Kafka

0.0

0.5

1.0

1.5

Cass. CRDB etcd
follower

etcd
leader

HBase
region

Kafka

Figure 23: Residual performance after filesystem delay (left), network package loss (middle), and network delay (right). The darker the colors,
the more severe the faults are. Each experiment was repeated 50 times for generalizability. Error bars refer to 95% confidence intervals.

recovery time as we iterate through higher delays. Kafka
takes a slightly longer recovery time (an average of 1.3s).
This is because of the distributed nature of Kafka (i.e., data
streaming) that relies more heavily on network communication.
Nevertheless, it is still acceptable as the recovery time is still
within seconds. Also, CRDB generally needs more time to
recover from filesystem delays (an average of 0.9s) than
network delays (0.3s).
Recovery time in flaky network. However, in the face of
network packet loss, the recovery time could be much longer.
In general, the recovery time of all systems increases as their
network becomes more flaky: the average time to recover
under a 10%, 40%, and 70% packet loss is 0.8s, 3.6s, and 7.1s
respectively.

We notice that the recovery time for a 70% packet loss is
notably higher than the other two cases. This is because the
injected node sometimes fails to establish a connection with
the cluster due to high packet loss and even experiences some
downtimes. In this case, after faults are cleared, systems will
schedule a considerable amount of background tasks to help
the injected node catch up with the cluster (e.g., hinted handoff
in Cassandra). In this case, system performance cannot recover
until background tasks are mostly finished and no longer serve
as bottlenecks. However, etcd may intentionally shut down
faulty nodes, thus no longer recovered.
Relationship betwen degradation and recovery time. A
higher performance degradation does not necessarily yield a
much longer recovery time. For example, CRDB degrades by
22% under a 1ms filesystem delay and then recovers in 0.92s,
while it degrades much more by 72% under a 1s filesystem

delay but then recovers faster in 0.78s. Similar observations
can be obtained in most fault setups (except for those with
high packet loss of 40% and 70%). This phenomenon can
be attributed to the fact that most slow faults we introduced,
while significantly impeding a distributed system, do not crash
nodes. Thus, systems can quickly recover to normal once the
faults are cleared.

F Residual Impact
Metrics and notations. We calculate the average throughput
after slow faults are cleared (denoted as avg_residual), and
compare it with the average throughput before fault injection
(denoted as avg_normal). We quantify the residual impact
as avg_residual

avg_normal where a value higher than 1 indicates that the
system is fully recovered and even outperforms the normal
state. On the other hand, a value smaller than 1 indicates that
the system’s overall performance is still affected by the residual
impacts of slow faults. Figure 23 presents the distribution of
residual impacts among all studied systems.
Performance drop. Severe slow faults could incur notable
residual impacts on system performance. For example, soon
after the 70% packet loss is cleared, etcd follower still suffers
from severe slowdowns for a while, while its performance
gradually increases over time. As a result, it can only achieve
an average performance that is only 77% of the normal state.
Similar observations can also be obtained in HBase.
Performance gain. We observed that some systems issue
bursty requests after slow faults finish. For example, the perfor-
mance gains in CRDB (after filesystem delays) and Cassandra
(after network delays) are all above 1, with an average of 1.13×

nw
delay 100us

nw
delay 1ms

nw
delay 10ms

nw
delay 100ms

0

20

40

60

80

3.0.0 3.4.0 3.5.10 3.0.0 3.4.0 3.5.10

follower leader

P
e

rf
o

rm
a

n
c
e

d
e

g
ra

d
a

ti
o

n
 (

%
)

(a) etcd

30

60

90

120

3.0.0 3.2.1 3.3.6 3.0.0 3.2.1 3.3.6

datanode namenode

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
)

(b) HDFS

Figure 24: Cross-version analysis of HDFS and etcd under network
slow faults. The x-axis shows different fault injection locations and
system versions. The y-axis shows the execution time of the TeraSort
benchmark in HDFS and the performance degradation in etcd.

and 1.08× respectively. Moreover, the more severe prior faults
are, the more performance gain we can observe. This is due
to system’s internal recovery mechanisms, such as backlog in
CRDB and hinted handoff in Cassandra.

Kafka demonstrates the most performance gains among
all systems, with an average of 1.4× after network faults are
cleared. Also, we notice that its cumulated performance gain
resembles its cumulated performance degradation during slow
faults (see Figure 2). This is due to the delayed flush of
messages. Producers in Kafka by default will buffer unsent
messages (due to a slow network in our case) in the memory
and then flush them all once the network faults are cleared. In
this case, the performance gain we observe is similar to the
performance degradation caused by slow faults. To validate
this, we configured Kafka to force flushing every message,
which eliminated such notable performance gains.

G Cross-Version Analysis
Distributed systems are constantly evolving, integrating bug
fixes and new features that also influence their fault tolerance
capabilities (e.g., HBase’s log roll mechanism discussed in
Section 4.2.3). In this section, we evaluate and compare the
nuances of slow-fault tolerance across different versions (see
Table 5) of two representative systems, HDFS and etcd. HDFS

System Version Year

HDFS
3.3.6
3.2.1
3.0.0

2023
2019
2017

etcd
3.5.10
3.4.0
3.0.0

2023
2019
2016

Table 5: Versions of HDFS and etcd used in the cross-version analysis.

is a relatively mature system while etcd represents newer
generations of distributed systems. Our goal is to understand
the evolving trajectory of these systems in terms of their
tolerance to slow faults.

Figure 24 presents the evaluation of etcd and HDFS under
network slow faults. In both HDFS and etcd, the performance
degardation does not vary much across different versions. As
we increase the degrees of severity, the performance degrada-
tion in etcd leader or follower also increases accordingly. We
also check other fault types (e.g., filesystem delays), showing
similar results. In conclusion, there is no significant improve-
ment in the slow-fault tolerance of these systems over time.
Their version updates highlight a lack of focus on this field.
Yet, the evident performance and awareness discrepancies
across these systems show the feasibility and improvement
we can obtain through moderate efforts.

	Introduction
	Methodology
	Testing Pipeline
	Data Collection

	Nuanced Slow-Fault Tolerance
	How Systems React to Varying Slow Faults?
	Do Resource Limits Amplify Slow Faults?
	How Workloads Affect Slow Tolerance?
	Does Tuning Configurations Help?
	Can Tail Latency Capture Slow Faults?
	Other Findings

	Current Practices to Handle Slowness
	Slowness Detection Method
	Slowness Mitigation Action
	Leader Re-election
	Client-Side Reconnection in gRPC
	Slowness-triggered Log Roll in HBase
	Escalation to Fail-Stop

	Testing

	State-of-the-Art Solutions
	An Adaptive Fail-Slow Detection Library
	Limitations of Existing Solutions
	ADR: Adaptive Detection at Runtime
	Evaluation

	Related Work
	Conclusion
	Fault Injection Tools
	Larger Cluster Size
	How Systems React to Varying Slow Faults
	Do Resource Limits Amplify Slow Faults?
	How Workloads Affect Slow Tolerance

	Leader Re-Election
	Client-Side Reconnection in gRPC
	Time to Recover
	Residual Impact
	Cross-Version Analysis

